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We report the first detection of X-ray emission associated with the Homuncu- 
lus Nebula which surrounds the supermassive star 7 Carinae. The emission is 
characterized by a temperature in excess of 100 ME(, and is consistent with scat- 
tering of the time-delayed X-ray flux associated with the star. The nebular 
emission is bright in the northwestern lobe and near the central regions of the 
Homunculus, and fainter in the southeastern lobe. We also report the detection 
of an unusually broad Fe K fluorescent line, which may indicate fluorescent scat- 
tering off the wind of a companion star or some other high velocity outflow. The 
X-ray Homunculus is the nearest member of the small class of Galactic X-ray 
reflection nebulae, and the only one in which both the emitting and reflecting 
sources are distinguishable. 

Subject headings: circumstellar matter - ISM: individual (Homunculus Nebula) 
- stars: individual (7 Carinae) - reflection nebulae - X-rays: stars 

1. Introduction 

The Homunculus (Gaviola 1950) is a young, hollow, expanding bipolar nebula surround- 
ing the extremely Iuminous and massive star 7 Carinae. It is believed to  have a total mass 
of 2-12A4fa (Smith, Gehrz & Krautter 1998; Smith et al. 2003a) and was ejected from the 
star during the "Great Eruption" of q Carinae in the 1840s. At about 10OMa (Davidson & 
Humphreys 1982) 7 Carinae is one of the most massive stars known. It possesses an enor- 
mous stellar wind, characterized by a mass loss rate of approximately - lOW3Ma yr-', 
and a wind velocity of about 500 km s-' (Hillier et al. 2001). 7 Carinae is a strong source 
of hard X-rays (Seward et al. 1979) and it undergoes a deep X-ray minimum every 5.53 
years (Ishibashi et al. 1999; Corcoran et al. 2001) that lasts for about 3 months. It has been 
suggested (Corcoran et al. 1997; Pittard et al. 1998; Ishibashi et al. 1999; Corcoran et al. 
2000) that the variable X-ray emission is produced by the collision of q Carinae's wind with 
a less dense, faster moving wind from an otherwise hidden companion (though alternative 
single-star models have been suggested, Davidson 1999). 7 Carinae began its most recent 
X-ray minimum on June 29, 2003 (Corcoran 2003) and lasted through September 3, 2003. 

A new observation by the CHANDRA X-ray Observatory during 7 Carinae's recent X- 
ray intensity minimum has for the first time identified X-ray emission from the Homunculus 
nebula itself. This emission is at least a factor of four fainter than the direct stellar emission 
detected during the minimum, and about a factor of 100 fainter than the direct stellar 
emission outside of the minimum. The emission associated with the Homunculus was not 
seen previously by CHANDRA or other X-ray observatories since it is hidden by the wings 
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of the instrumentally broadened central source outside of the X-ray minimum. In this paper 
we report the spectral, spatial and temporal properties of the X-rays from the Homunculus. 
A more detailed discussion of these data regarding the X-ray emission from 7 Carinae and 
its surroundings during the X-ray eclipse interval will be presented elsewhere (Corcoran et 
al.. 2004a, in preparation). 

This paper is organized as follows. The observations are presented in $2. The X-ray 
and optical imaging of q Carinae and its surroundings are compared in 53. In $4 we analyze 
the X-ray spectrum of the Homunculus, and interpret this emission in $5. We discuss spatial 
and temporal variations of the emission in $6, and present our conclusions in $7. 

2. 0 bservations 

To help characterize the nature of the X-ray minimum, we planned five observations 
with the CHANDRA X-ray Observatory before, during and after this event as part of a 
large, multi-wavelength observing campaign during the summer of 2003. The CHANDRA 
observations used the Advanced CCD Imaging Spectrometer (ACIS) spectroscopic array 
(Garmire et al. 2003) plus the High Energy Transmission Gratings (Marked et al. 1994). 
One observation was obtained on July 20,2003 (CHANDRA sequence number 200216) when 
contemporaneous monitoring with the RXTE satellite observatory showed 77 Carinae to be in 
the middle of its X-ray eclipse’. The total exposure time was 90,275 seconds. We re-extracted 
good “Level 2” events from the ”Level 1” events file using the CHANDRA Interactive Anal- 
ysis of Observations (CIAO) software package and the processing steps recommended by the 
CHANDRA X-ray Center2. We included corrections for charge transfer inefficiency (CTI) 
and destreaking. The effective resolution of the screened photon events file was increased 
using the algorithm of Tsunemi et al. (2001)3. 

A followup director’s discretionary time observation with ACIS was obtained on August 
28,2003 (sequence number 200237) in order to confirm the detection of X-ray emission from 
the Homunculus and to look for changes in the extended emission which might have occurred 
as the central source brightened. This observation was obtained with 77 Carinae placed on 
the ACIS S3 chip, though to minimize the exposure time required the gratings were not used. 
In order to mitigate effects from pileup of the central source we used a 1/8 sub-array during 

http: //lhea~~.gsfc.nasa.~ov/users/corcoran/eta-~/etacarlxtelightcu~e/. 

2http://cxc.harvard.edu/ciao/threads/data.html 

3http://cxc. harvard.edu/cont-soft/softwa.re/subpixelresolution. 1.4.html 
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the observation. The total exposure time of this observation was 18,796 seconds. As above, 
we re-extracted the level 2 photon events and corrected for CTI, destreaking and improved 
the spatial resolution using the algorithm of Tsunemi et al. (2001). 

3. X-ray and Optical Imaging 

Figure 1 shows the zeroth-order X-ray image of 77 Carinae obtained by the ACIS-S3 
CCD. The color coding of the image represents emission from gas at different temperatures: 
red corresponds to the temperature range 2-15 million degrees (0.2-1.5 keV), green 15-30 
million degrees (1.5-3.0 keV), and blue 30-100 million degrees (3-10 keV). 7 Carinae is 
visible as a blue-white source at the center of the image. As seen previously (Seward et 
al. 2001), an incomplete elliptical ring or shell of soft X-ray emission (which appears red in 
figure 1) nearly surrounds 77 Carinae at a distance of about 2.2 light years from the star. An 
elongated patch of bluish (hard X-ray) emission about 17” in length (about 0.G light years) 
is clearly visible in Figure 1 between the star and the outer red shell. This hard emission 
was probably detected in earlier ACIS observations (Seward et al. 2001; Weis, Corcoran, 
Bomans, tk Davidson 2004), as a halo of scattered X-rays surrounding the central stellar 
source; however contamination by X-rays from the bright, heavily piled up central source 
did not allow this halo to be clearly identified. Figure 1 also shows an HST/WFPC2 image 
of the nebulae surrounding 77 Carinae, at the same scale and orientation as the X-ray image. 
77 Carinae is not visible in the image, which is scaled in intensity .to highlight the nebulosities. 
The hard “blue” emission in the X-ray image and the optical image of the Homunculus show 
marked similarities in size, shape and orientation. 

Figure 2 shows an overlay of the 3-8 keV band X-ray contours on an HST image obtained 
by the Advanced Camera for Surveys (Ford et al. 2003) as part of the HST 77 Carinae 
“Treasury Project”*. The isophots of the hard emission clearly follow the shape of the 
Homunculus, and there is very little hard X-ray emission beyond the Homunculus. Figure 3 
shows the spatial variation of X-ray surface brightness through the Homunculus for 3 impact 
parameters, one through the central star and others between 3 and 4 arcseconds on either 
side of the star. The X-ray brightness is not uniform: the northwest lobe, and regions near 
the star are apparently brighter than the southeast lobe. 

4http: //etacar.umn.edu/ 
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4. X-ray Spectroscopy of the Homunculus 

We extracted an X-ray spectrum of the Homunculus from an elliptical region of 22’‘ x 14” 
oriented with the semi-major axis along the polar axis of the Homunculus, excluding emission 
within 2.5 arcseconds of the star (which should exclude more than 95% of the direct stellar 
flux) and soft emission from the outer ejecta. The X-ray spectrum of the Homunculus is 
shown in Figure 4. This spectrum has been corrected for background emission, which was 
estimated from a sourcefree region to  the northwest of the “red shell”. 

4.1. The Thermal Component 

We created responses and effective areas for the ACIS observation, and fit the ex- 
tracted spectrum with a combination of absorbed collisionally-ionized plasma models using 
the “mekal” model within the XSPEC analysis package (Arnaud 1996). For simplicity we as- 
sumed solar abundances although the composition of material around q Carinae is decidedly 
non-solar. The X-ray emission associated with the Homunculus appears to be dominated by 
a component with a characteristic temperature of 113 million degrees, along with a weaker, 
cooler component (- 7 million degrees). Table 1 compares the spectral properties (tem- 
perature, column density and luminosities) for the cooler and hotter components of the 
Homunculus, and the X-ray spectrum extracted from a 3.5” circle around the central star 
(corrected for background using the same background region as above). 

The hard emission from the Homunculus is strongly absorbed, having an equivalent 
hydrogen column density ( N H )  = 1.5 x loB atoms cm-’, which is about the same as the 
absorbing column to the star. The absorbing column to the 6.7 million degree component 
is only = 2 x loz1 atoms cm-2, which is consistent with foreground absorption. An 
examination of a low-energy X-ray image shows that this emission is clearly associated with 
the X-ray “bridge” (Weis et al. 2002; Weis, Corcoran, Bomans, & Davidson 2004) running 
across the middle of the Homunculus. 

4.2. Fluorescent Emission 

The strongest feature in the X-ray spectrum of the Homunculus is an iron K-shell line at 
6.4 keV, which we have modelled as a Gaussian in Figure 4. The inset in Figure 4 shows the 
ratio of the observed emission to a simple power law model which describes the continuum 
emission near the Fe line complex. The 6.4 keV line is produced by fluorescent scattering of 
X-rays by iron atoms (in either a gaseous phase inside the Homunculus, or locked in solid 
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dust grains). The equivalent width of this iron line is about 1.5 keV, which is about a factor 
of 5 larger than the equivalent width of the iron fluorescent line seen in the spectrum of the 
star at times outside of the X-ray minimum. The line is significantly broadened (a  M 0.1 
keV) corresponding to  a Doppler width of about 4700 km s-’. The fluorescent line in the 
stellar spectrum outside of minimum is consistent with a = 0 (Corcoran et al. 2001b). The 
velocity width of the line measured here is much larger than twice the measured expansion 
velocity of the Homunculus, which is only about 650 km s-I. The line broadening might 
be indicative of scattering off higher velocity flows in the lobes of the Homunculus. The 
velocity of 7 Carinae’s wind near the poles of the star has been measured to  be z 1100 
km s-l (Smith et al. 2003b), so that scattering from this material would produce a line 
broadening of 5 2200 km s-’, still a factor of 2 or more too low. At energies > 6.4 kev, some 
of the observed broadening is probably due to blending of narrow fluorescent Fe lines from Fe 
in a range of ionization stages. However, the fluorescent line shows an apparent “red wing” 
(as seen in the inset in figure 4) extending to - 6.2 keV, which cannot be produced from line 
blending. Perhaps processes more exotic than simple Doppler broadening are in evidence. 
For example, Compton scattering can produce a “core” line with low energy “shoulders” 
(Matt 2002) though the intensity of the shoulder is expected to  be much lower than the 
intensity of the core, which does not appear t o  be the case here (though it is conceivable 
that the line profile is produced by some superposition core lines + Compton shoulders given 
the complex scattering surfaces in the Homunculus). On the other hand, in systems like low- 
mass X-ray binaries and active galaxies, the presence of a compact object can give rise to 
broad Fe K lines with significant red wings due to gravitational redshifts in accretion disks, 
but there is no strong evidence for the presence of a compact object in the 7 Carinae system. 
It is perhaps most likely that the red wing is produced by X-ray scattering off neutral iron 
in the wind of 7 Carinae’s companion star, since the companion’s wind velocity is believed 
to be N 3000 km s-’ (Pittard & Corcoran 2002), and the companion’s wind should be 
receding from the observer at the time of the CHANDRA observation, based on the orbit 
presented in Corcoran et al. (2001). However, the companion’s wind should be confined near 
the orbital plane, while the broad fluorescent line is apparently distributed throughout the 
entire Homunculus. 

5 .  Interpretation of the X-ray Emission from the Homunculus 

The high energy X-ray spectrum of the Homunculus is similar to  the hard X-ray emission 
from 7 Carinae itself in temperature and column density. Such emission could arise from 
shock-heated gas in the lobes of the Homunculus, but while shocked gas has been observed 
in (Smith 2002) and around (Dorland et al. 2003) the lobes, the deduced velocities are too 

-~ 
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low to produce significant emission at 8 keV. Furthermore, high velocity shocked gas could 
not exist in the lobes since such shocks are inconsistent with the presence of H2 which is 
seen in the lobes (Smith 2002). The high energy X-rays we observe from the Homunculus 
are instead an X-ray “light echo” in which ha,rd X-ray photons produced in a strong, high- 
velocity shock near 7 Carinae are reflected to the observer at earth, primarily by Thomson 
scattering off electrons in the Homunculus. Although the Homunculus contains si&cant 
amounts of dust, scattering from dust grains could not produce the Homunculus X-rays since 
dust scattering is so strongly forward peaked (Predehl & Schmitt 1995). 

The amount of scattering depends approximately on the ratio of the scattering cross 
section to the mass-weighted geometrical cross section of the lobes. For simplicity we consider 
the Homunculus as 2 hollow connected spheres with an axis running from the point of contact 
of the spheres through their centers, and assume that the axis is tilted by 45” t o  the line of 
sight, with the northwest lobe tilted away from the observer. Assuming that the composition 
of the Homunculus is 50% helium. and 50% hydrogen, the total number of electrons is roughly 
Ne < 5 x and the total Thornson-scattering cross section is A, = Ne x OT < 3.6 x loB 
cm2, where OT is the Thomson scattering cross section (0.665 x loe2* cm2), assuming each 
lobe contains 6 solar masses (Smith et al. 2003a) as an upper limit. The approximate 
geometric radius of a lobe is very roughly RL = 2.3 x 10’’ cm after weighting the lobe by 
the derived mass distribution (Davidson, et al. 2001). Thus the probability of scattering for 
an X-ray photon is roughly P,,, < (AJ47rRi) = 0.5%. The observed scattering probability 
is roughly P,,, = IH(t)/Iv(f), where I H ( ~ )  is the intensity of the emission reflected from 
the Homunculus at the time of the CHANDRA observation, and I v ( f )  is the intensity of the 
star at an earlier time t’ = t - at, where 4 t  is the light-travel time between the star and the 
reflecting surface, At 88 days. Monitoring with the RXTE observatory shows, 88 
days prior to the CHANDRA observation (April 23, 2003, observation identification 80001- 
01-54-00, Corcoran et al. 2004b, in preparation), that Iv(t’) M 1.6 x ergs s-l, so that the 
observed scattering probability PSmt = 3.4 x 103’/1.6 x = 0.2%, in very good agreement 
with the derivation given above for regions with appreciable light travel times. 

RL/C 

6. Spatial and Temporal Variations 

Regions of the Homunculus nem the star where light travel times are negligible are also 
X-ray bright. Figure 3 shows that the X-ray emission in the Homunculus on either side of 
the star is noticeably peaked near the star, though there is much less contrast in surface 
‘brightness on either side of the star. This suggests that, in the direction of the low-latitude 
reflecting surfaces, the stellar source may be substantially brighter than the stellar flux that 
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we see directly, and/or the amount of scattering material in the region near the star may be 
much higher than the amount of material in the lobes. Another alternative is that there may 
be substantially more extinction to the X-ray emitting region along our line of sight than in 
the direction of these reflecting surfaces. In principal some or all of these suggestions may 
play a role. Detailed analysis of the variation of the surface brightness profiles depends on 
the time-varying flux from the central source, the real distribution of matter in the lobes, 
and the amount of material between the star and the reflecting surfaces. 

Figure 5 shows a comparison between the ACIS S3 image obtained on August 28 and 
the HETG+ACIS S3 zeroth order image from the July 20th observation. The images have 
been exposure corrected. The image on the left shows the August 28 image contours on the 
July 20th image. Both images are in the 3-8 keV band. The shape and intensity of the 
emission from the Homunculus is very similar in the two observations. Figure 5 also shows 
a difference image in which the exposure corrected August 28 image is subtracted from the 
exposure corrected July 20 image. Contours in gray are negative contours (July 20 brighter 
than August 28) and black are positive. Though the brightness of the central source has 
increased substantially between the two observations, there is little change in intensity in 
the reflected emission from the Homunculus, although there is perhaps some evidence of a 
fading in the southeastern lobe. 

7. Conclusions 

We have presented the first clear detection of X-ray emission from the Homunculus neb- 
ula around 7 Carinae, and have shown that this emission is consistent with the amount of 
stellar emission expected to  be scattered from the Homunculus accounting for light-travel- 
time delays. Along with the scattered emission, we note the presence of strong Fe K flu- 
orescent line at 6.4 keV, which is anomalously broad, and which shows emission below 6.4 
keV . 

The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflec- 
tion nebulae (Murakami, Senda, Maeda, & Koyama 2003), and the only one where both the 
emitting source and reflector are clearly identified. Variation in the intensity, orientation and 
spectral shape of the central source will be mirrored by variations in the scattered emission 
from the Homunculus, and in principle can help define the three-dimensional structure by 
providing view of the stellar X-ray source from multiple lines of sight, similar to the way in 
which reflected optical emission provides a latitudinally-dependent view of q Carinae itself 
(Smith et al. 2003b). Continued monitoring of the reflected emission after the star’s X-ray 
minimum would be especially interesting, since this could provide a measure of the intrinsic 
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X-ray luminosity of the star during the minimum, and could help distinguish an occultation 
of the X-ray source from variation in the source’s intrinsic X-ray brightness. Additional high 
spatial resolution observations of the X-ray echo from the Homunculus can help define the 
three-dimensional structure and variability of the stellar X-ray source. Observations of the 
reflected emission can also help map out the geometry of the absorbing material between the 
emitting region aad the reflecting surface and allow us to more accurately model this unique 
system. 

We gratefully acknowledge the exceptional support of Dr. Red  Seward and Dr. Nor- 
bert Schulz of the CHANDRA X-ray Center for their help in scheduling these observations. 
We also would like to thank the anonymous referee for helpful comments. This work was 
supported by S A 0  grant #G03-4008,4. This research has made use of NASA’s Astrophysics 
Data System. This research has made use of software obtained from the High Energy Astro- 
physics Science Archme Research Center (HEASARC), provided by NASA’s Goddard Space 
Flight Center, software developed and provided by the CHANDRA X-ray Center, and the 
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Fig. 1.- Left: A color X-ray image of 7 Carinae during the star’s most recent X-ray 
minimum obtained by the CHANDRA X-ray observatory. North is to  the top, and East 
to  the left. Red indicates low-energy X-ray emission (0.2 - 1.5 keV), green medium energy 
(1.5 - 3.0 keV) and blue high-energy emission (3.0 - 8.0 keV). Emission from the star itself 
is visible as a white point source at the center of the image. A red, broken elliptical ring of 
emission lies beyond the star. The bluish patch around the star inside this ring is reflected 
X-ray emission from the Homunculus Nebula. Right: An HST/WFPC2 [NII] A6583 image 
of 7 Carinae. The plate scale and orientation of the Hubble and CHANDRA images are the 
same. 
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Fig. 2.- Contours of the 3 - 8 keV X-ray e-mission on a Hubble ACS image of the Honiuncu- 
lus. Contour levels are 0.1, 0.7, 6.9 and 68.9% of the peak brightness. 
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Fig. 3.- The image on the left is the contour map of the 3-8 keV X-ray surface brightness 
of the Homunculus. Surface brightness profiles 10” to  the left of the star, on the star, and 
10” to the right of the star are shown next to the contoured image. The location of the 
surface brightness cuts on either side of the star is shown by the vertical dashed lines. The 
left and right brightness profiles are integrated between the dashed lines. 
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Photon Energy (keV) 

Fig. 4.- The X-ray spectrum of the Homunculus from the July 20th observation. The model 
spectrum is shown as an unbroken line, with individual components shown by broken lines. 
An emission line near 0.9 keV may be emission from Fe XVII or Ne IX, while the strongest 
emission line at 6.4 keV is produced by fluorescent scattering of X-rays by iron atoms in 
the Homunculus. Emission from at least two plasmas, one at a temperature near 7 million 
degrees and one at a temperature of about 100 million degrees are required to describe the 
observed spectrum. The inset shows the ratio of the emission near the Fe line complex at 
6.46.8 keV to  a simple power law model to describe the continuum emission. Significant 
emission below 6.4 keV is observed in the Fe K fluorescent line. 
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Fig. 5.- The image on the left shows contours of the August 28 2003 observation on the July 
20th ACIS zeroth-order image. The image on the right shows a contour image of the exposure 
corrected August 28 image minus the exposure-corrected July 20 image. Negative contours 
are shown in gray. The central source is significantly brighter in August 28 compared to  the 
earlier observation. 
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Table 1: Spectral Characteristics of the Emission from the Homunculus 

Lz” L . c b  Component Temperature Column Density 
~ ,- 

(lo6 K) (loz2 cm-2) ( 1031 ergs s-’) ergs s-l) 
19.8 Homunculus (soft) 6.7 f 2.7 0.2 f 0.1 17.7 f 2.1 
113 Homunculus (hard) 113 f 66 15 f 3.3 46.6 f 4.3 

star 58.0 f 3.5 15 f 4.5 142.4 f 5.1 311.4 

“Observed luminosity in the 0.510 keV band, assuming the distance to 77 Carinae is 2300 pc (Hillier et al. 
2001). 

bAbsorption corrected luminosity in the 2-10 keV band 


